Tetrahedron Letters No.47, pp. 3579-3582, 1964. Pergamon Press Ltd. Printed in Great Britain.

THE STRUCTURE AND STEREOCHEMISTRY OF 2-p-METHOXY PHENYL-3,4-DIBENZYL-1,3,4-THLADIAZOLD INE-5-THIONE BY X-RAY ANALYSIS
I. L. Karle and J. Karle
U.S. Naval Research Laboratory, Washington, D.C.
R. M. Moriarty

The Catholic University of America, Washington, D.C.
(Received 5 October 1964)
The reaction of N, N '-dialkylhydrazines with aromatic aldehydes and an unsaturated compound (a dipolarophile) represents a versatile and useful heterocyclic synthesis via 1,3-dipolar cycloaddition (1). In this three component system, reaction of the aldehyde and hydrazine yields an equilibrium concentration of the 1,3-dipolar azomethine-imine intermediate (A). Subsequent addition to the dipolarophile completes the cycloaddition $(A \rightarrow B)$. Support for this description of the reaction was provided by the

(C)
observation that the hydrazine and aldehyde, in the absence of a dipolarophile, yielded the corresponding hexasubstituted hexahydro-$1,2,4,5$-tetrazine (C); thermal decomposition of (C) in the presence of the dipolarophile yielded the same adduct as was obtained in the three component system.

In the case of carbon disulfide as dipolarophile, the resulting product of 1,3 -dipolar cycloaddition is a 1,3,4-thiadiazolidine-5thione (2) (D). While considerable chemical and physical evidence was

(D)
adduced in favor of the 1,3,4-thiadiazolidine-5-thione structure for these adducts, the possibility existed of addition of the dipolarophile in the reverse sense to yield a 1,2,3-thiadiazolidine-5-thione derivative. A1so an unexpected $A B$ quartet patcern was observed in the NMR for the $N(3)$ methy lene group of a number of these derivatives with the large
 This result could be due to asymmetry at either C_{2} or N_{3}. In the light of these unres:olved and unusual features and also due to the versatility of this 1,3-dipolar heterocyclic syathesis, an x-ray diffraction study of 2-p-methoxy pheny 1-3,4-dibenzyl-1,3,4-thiadiazolidine-5-thione was undertaken in order to establish unequivocally the structure of this representative compound.

The material crystalifzes in the triclinic system with unit cell dimensions: $a=7.74 \stackrel{\circ}{\mathrm{~A}}, \mathrm{~b}=12.07 \stackrel{\circ}{\mathrm{~A}}, c=12.32 \stackrel{\circ}{\mathrm{~A}}, \alpha=111^{\circ} 20^{\prime}, \beta=88^{\circ} 10^{\prime}$, $\gamma=100^{\circ} 43^{\prime}$, and contains two molecules per unit cell. Statistical tests on the full sphere of x-ray data obtained with Cuk radiation strongly indicated the presence of a center of symmetry in the cell. Phases for the x-ray reflections determined directly by the symbolic addition procedure (3) led to an electron density map which displayed the configuration and stereochemistry of the molecule. A least squares refinement of $\mathbf{3 7 8 0}$ data with anisotropic temperature factors results in an R factor of 10.7%.

FIG. 1

The determination of the crystal structure confirmed the structural formala (D). Fig. 1 illustrates the configuration of the molecule. In the SCNNC ring, atoms S_{1}, N_{3}, N_{4}, and G_{5} lie in a plane whereas atom C_{2} is displaced from the plane by $0.58 \stackrel{\circ}{\mathrm{~A}}$. The other sulfur atom and the carbon atom attached to N_{4} lie nearly in the same plane as $S_{1} N_{3} N_{4} C_{5}$. Of particular
interest is the fact that the three bonds to N_{3} form a pyramid with angles of $\sim 110^{\circ}$ while the three bonds to N_{4} lie in a plane. Furthermore, the $\mathrm{C}_{2}-\mathrm{N}_{3}$ distance is $1.51 \stackrel{\circ}{\mathrm{~A}}$, a single bond value, while the $\mathrm{C}_{5}-\mathrm{N}_{4}$ distance is 1.36 A , close to a double bond value. The proximity of the $C=S$ bond to N_{4} has undoubtedly a large effect on the bonding system. Ringe I and IIL are in planes nearly parallel to each other. These planes make an angle of $\sim 80^{\circ}$ with the plane of SNNC. The constituents attached to C_{2} and N_{3} are trane to each other. The plane of ring II makes an angle of $\sim 112^{\circ}$ with the planes of rings I and IIL.

A detailed description of the structure deternination will be published elsewhere

REFERENCES

1 R. Huisgen, Angev. Chem., Internat. Edit. 2, 565 (1963).
2 R. Grashey, R. Huisgen, K. K. Sun and R. M. Morlarty, submitted J. Org. Cher.

3 I. L. Karle and J. Karle, Acta Cryst. 16, 969 (1963).

